viernes, 29 de abril de 2011

"diferencia de potencial"

diferencia de potencial 


La tensión eléctrica o diferencia de potencial es una magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos. También se puede definir como el trabajo por unidad de carga ejercido por el campo eléctrico sobre una partícula cargada para moverla entre dos posiciones determinadas. Se puede medir con un voltímetro.
También es denominada como voltaje cuando se expresa en voltios (V), que es la unidad del Sistema Internacional de Unidades para esta magnitud y para el potencial eléctrico.
La tensión es independiente del camino recorrido por la carga y depende exclusivamente del potencial eléctrico de los puntos A y B en el campo eléctrico, que es un campo conservativo.
Si dos puntos que tienen una diferencia de potencial se unen mediante un conductor, se producirá un flujo de electrones. Parte de la carga que crea el punto de mayor potencial se trasladará a través del conductor al punto de menor potencial y, en ausencia de una fuente externa (generador), esta corriente cesará cuando ambos puntos igualen su potencial eléctrico (ley de Henry). Este traslado de cargas es lo que se conoce como corriente eléctrica.
Cuando se habla sobre una diferencia de potencial en un sólo punto, o potencial, se refiere a la diferencia de potencial entre este punto y algún otro donde el potencial sea cero.


Señal de peligro eléctrico, comúnmente


intensidad de corriente y la resistencia existentes entre ellos, tal como indica la ley de Ohm:
V = {R} \cdot{I} \,

Tensión en un condensador

V = \frac{1}{C} \cdot q = \frac{1}{C} \cdot \int_{0}^{t} i \cdot dt + q_0

Tensión en una bobina

V = L \cdot \frac{di}{dt}

Tensión eficaz


Un multímetro con la función de voltímetro seleccionada. En corriente alterna indica el valor eficaz de la tensión.
La tensión eficaz o valor eficaz de la tensión es el valor medido por la mayoría de los voltímetros de corriente alterna. Equivale a una tensión constante que, aplicada sobre una misma resistencia eléctrica, consume la misma potencia eléctrica, transformando la energía eléctrica en energía térmica por efecto Joule.
La energía consumida en un periodo de tiempo T por una resistencia eléctrica es igual a
W = P \cdot T = I_{ef}^2 \cdot R \cdot T = \frac{1}{R} \cdot V_{ef}^2 \cdot T = \frac{1}{R} \cdot {\int_{0}^{T} {V^2(t)}\, dt},
donde W es la energía consumida, P es la potencia, T es el periodo de tiempo, Ief es la intensidad eléctrica, Vef es la tensión eficaz y V(t) es el valor instantáneo de la tensión en función del tiempo t.
Despejando la tensión eficaz se obtiene la media cuadrática de la tensión:
V_{ef} = \sqrt {{1 \over {T}} {\int_{0}^{T} {V^2(t)}\, dt}}.
En corriente alterna, la tensión varía conforme una onda senoidal.
V(t)=V_0 \cdot \sin(\omega t + \phi),
donde se expresa la tensión V en función del tiempo t. V0 es la amplitud de la tensión, ω es la frecuencia angular y φ es el desfase.
Tomando como periodo de integración el periodo de la onda (T = 2π / ω), se tiene:
V_{ef} = \sqrt {{\frac{\omega}{2\pi}} {\int_{0}^{\frac{2\pi}{\omega}} {V_0^2 \sin^2(\omega t)}\, dt}};
Como la amplitud de la tensión V0 es constante puede sacarse fuera de la integral.
V_{ef} = \sqrt {{\frac{V_0^2\omega}{2\pi}} {\int_{0}^{\frac{2\pi}{\omega}} {\sin^2(\omega t)}\, dt}}.
Aplicando una identidad trigonométrica para eliminar la potencia cuadrática de una función trigonométrica:
V_{ef} = \sqrt {{\frac{V_0^2\omega}{2\pi}} {\int_{0}^{\frac{2\pi}{\omega}} {{1 - \cos(2\omega t) \over 2}}\, dt}};
Integrando:
V_{ef} = \sqrt {{\frac{V_0^2\omega}{2\pi}} \Big [ {\frac{t}{2}-\frac{\sin({2\omega t})}{4\omega}} \Big ]_{0}^{\frac{2\pi}{\omega}} }
V_{ef} = \sqrt {{\frac{V_0^2\omega}{2\pi}} \cdot \frac{\pi}{\omega} }
V_{ef} = \frac{1}{\sqrt {2}} V_0

1 comentario: